+7(499)-938-48-12 Москва
+7(812)-425-63-82 Санкт-Петербург
8(800)-350-73-64 Горячая линия

Расчет и применение коэффициента Шарпа

Содержание

Коэффициент Шарпа

Расчет и применение коэффициента Шарпа

Один известный фьючерсный трейдер сказал, что при одинаковом уровне дохода по итогам года у нескольких трейдеров, коэффициент Шарпа показывает, кто из них добился его за счёт своего мастерства (преимущества на рынке), а кто за счёт принятия слишком высоких рисков.

Очевидно, что ставку следует делать на первых, на тех, кто добивается результатов, сохраняя при этом приемлемый уровень риска, исключительно за счёт своего трейдерского  мастерства.

Так как понятно, что высокие риски, рано или поздно, приводят к значительным убыткам (зачастую к полному сливу депозита).

Если в двух словах, то коэффициент Шарпа показывает какую прибыль получает трейдер на единицу риска

Для начала совсем немного истории. Впервые данный коэффициент увидел свет в 1966 году благодаря стараниям будущего нобелевского лауреата Уильяма Шарпа (свою Нобелевскую премию он получит через 44 года за разработку модели для оценки капитальных активов CAPM).

Формула коэффициента Шарпа

Расчёт данного коэффициента ведётся по следующей формуле:

R – доходность оцениваемого трейдера (портфеля);

Rf – доходность безрискового вложения (как правило, берётся доходность по государственным облигациям или по банковскому депозиту);

σ – стандартное отклонение доходности оцениваемого трейдера от доходности безрискового вложения.

Значения доходности берутся за тот период времени, на который рассчитывается искомый коэффициент. Как правило, рассматривают значение коэффициента Шарпа за год, но в отдельных случаях бывает целесообразно рассчитывать его квартальные, месячные и даже дневные значения.

Пример расчёта коэффициента Шарпа

Пусть вас не пугает приведённая выше формула, на самом деле всё очень просто. Давайте разберём расчёт на простом и понятном примере. Посчитаем коэффициент Шарпа по итогам работы трейдера за квартал. Дабы не усложнять пример множеством цифр, возьмём лишь три значения доходности трейдера, за каждый месяц торговли в целом:

1 месяц – 15%

2 месяц – 25%

3 месяц – 5%

Таким образом, доходность трейдера за квартал составила (15%+25%+5%)/3=15%. При этом доход по облигациям государственного займа всё это время составлял 10%.

Посчитаем стандартное отклонение доходности. Для этого вычтем из каждой месячной доходности трейдера, доходность по облигациям:

15% – 10% = 5

25% – 10% = 15

5% – 10% = -5

Далее возведём  полученные значения в квадрат и вычислим среднее арифметическое (т.е. суммируем и поделим на общее их количество):

(5х5 + 15х15 + (-5)х(-5))/3 = 91,66

Ну и наконец, извлекаем из полученного значения квадратный корень и имеем в итоге искомое стандартное отклонение (его ещё называют среднеквадратичным отклонением):

√91,66 = 9,57

Остаётся только вычесть из средней доходности трейдера за квартал (15%), значение доходности по безрисковому вложению (10%) и поделить полученный результат на стандартное отклонение:

(15 – 10)/9,57 = 0,52

Таким образом, искомый коэффициент Шарпа для рассматриваемого примера составляет 0,52.

Выводы

Давайте ещё раз взглянем на формулу коэффициента, приведённую в начале статьи. Она показывает, что величина коэффициента Шарпа прямо пропорциональна проценту доходности трейдера и обратно пропорциональна разбросу его результативности.

То есть, другими словами, чем больше и стабильнее средний доход трейдера, тем выше значение искомого коэффициента.

Обратите внимание, что если средний доход трейдера составит величину меньшую чем доходность по безрисковому вложению, то коэффициент получит отрицательное значение.

В этом случае возникает вполне закономерный вопрос: если доходы трейдера меньше, чем доход, по тем же облигациям или по банковскому депозиту, то какой смысл ему вообще заниматься трейдингом? Не проще ли вложить деньги в облигации или в банк? Риск при этом однозначно будет меньшим, а доходность выше.

Анализируя вышеприведённую формулу можно также сделать вывод о том, что трейдер со средним показателем доходности, например в 15%, может быть более успешным, чем трейдер со средней доходностью в 25% за тот же период.

Ведь коэффициент учитывает разброс этих самых значений доходности и если у первого трейдера этот разброс будет меньше (он торгует более стабильно), чем у второго, то и коэффициент, в итоге, может получиться выше.

Рассмотрим вышесказанное на ещё одном простом примере:

Первый трейдер:

1 месяц – 50% доходности

2 месяц – 0% доходности

3 месяц – 25% доходности

Средняя доходность за квартал: (50% + 0% + 25%)/3 = 25%

Второй трейдер:

1 месяц – 20% доходности

2 месяц – 10% доходности

3 месяц – 15% доходности

Средняя доходность за квартал: (20% +10% + 15%)/3 = 15%

Разброс значений доходности относительно базовой ставки (примем её равной проценту по государственным облигациям – 10%), выраженный в виде среднеквадратичного отклонения будет таким:

Первый трейдер: √ ((40х40+(-10)х(-10)+15х15)/3)=25,33

Второй трейдер: √ ((10х10+0х0+5х5)/3)=6,45

Ну и значение коэффициента Шарпа:

Для первого трейдера: 25/25,33=0,98

Для второго трейдера: 15/6,45=2,32

Полученный результат говорит нам о том, что второй трейдер, несмотря на меньшую среднюю доходность по итогам квартала, тем не менее, является более предпочтительным. Выбирая трейдера для доверительного управления своими деньгами, я, определённо, отдал бы своё предпочтение второму.

Коэффициент Шарпа можно использовать для оценки эффективности работы ПИФов, взаимных фондов, управляющих трейдеров и т.п. Только не следует ограничиваться одним значением за определённый период времени. Для получения объективной картины следует рассматривать несколько значений данного коэффициента за различные временные промежутки.

Также следует иметь ввиду следующие моменты:

  • Данный коэффициент не различает, в какую сторону направлены отклонения доходности от базовой (безрисковой). Поэтому, строго говоря, он измеряет в большей степени совокупную волатильность портфеля, нежели риск.
  • Кроме того, этот коэффициент не видит различий между последовательно следующими друг за другом убытками, и убытками, которые относительно равномерно чередуются с прибылями.

Источник: https://www.AzbukaTreydera.ru/koehfficient-sharpa.html

Коэффициент Шарпа (Sharpe Ratio), как его определить. Формула расчета коэффициента

Расчет и применение коэффициента Шарпа

Коэффициент Шарпа, (если хотите — Sharpe Ratio) был разработан в 1966 году лауреатом нобелевской премии Вильямом Шарпом и применяется для того, чтобы измерять уровни риска в инвестиционных портфелях.

Данный коэффициент является показателем инвестиционного актива (портфеля) и вычисляется в виде отношения усредненной премии за риск к усредненному отклонению актива (портфеля). В итоге, чем коэффициент выше, тем будут лучше результаты, показывающие по отношению к выбранным рискам инвестиционный актив.

РЕКОМЕНДУЕМ: ТОП 3 ЛУЧШИХ БРОКЕРА

БЕСПЛАТНЫЕ ОПЦИОНЫ НОВЫМ ТРЕЙДЕРАМ: | УВЕЛИЧИМ ВАШ ДЕПОЗИТ В 2 РАЗА: | БЕЗРИСКОВАЯ СДЕЛКА В ПОДАРОК: |

Sharpe Ratio используют, чтобы определить насколько хорошо доходность от инвестиционного портфеля будет компенсировать принимаемый инвесторами риск. Другими словами, если сравнивать два актива с ожиданием одинаковых доходов, то вложение портфеля с более высоким показателем коэффициента Шарпа будет не таким рискованным.

Помимо этого, коэффициент Шарпа наглядно показывает, связан ли результат вложения инвестиций с чрезмерным риском или с досконально продуманным решением.

Коэффициент Шарпа, как же его определить? Формула расчета

Формула, по которой определяется (рассчитывается) Коэффициент Шарпа (Shаrpe Ratiо) достаточно проста.

Для начала необходимо определить безрисковую процентную ставку из рентабельности актива, к примеру, ту, что предлагается облигация министерства финансов США. После этого полученный результат поделить на стандартное отклонение портфельной прибыли (что такое стандартное отклонение смотрите ниже).

Формула расчета коэффициента, такова:

SR= Rp — Rf/?, где

SR – коэффициент Shаrpe Ratiо;

Rp – ожидаемая прибыльность актива (т.е. портфеля);

Rf – % -ая ставка без риска;

? – сигма, стандартное отклонение.

Числитель является средним значением разницы за 36 месяцев доходности фонда с безрисковой ставкой, которая равна ставке рефинансирования.

В знаменателе стоит стандартное отклонение, являющееся мерой риска, другими словами вероятностью того, что полученная в будущем инвесторами доходность будет отличной от ожидаемой средней за 36 месяцев доходности.

: Определяем эффективность стратегий торговли по коэффициенту Шарпа

Что такое стандартное отклонение — ? и как оно влияет на работу коэффициента Шарпа?

В финансовом мире стандартное отклонение зачастую обозначают греческой буквой «?» (сигма, как в случае с коэффициентом Шарпа) и используют для того, чтобы оценить волатильность инвестиций.

Определить волатильность посредством стандартного отклонения – дело очень сложное, но нас это на данный момент не должно сильно беспокоить.

Важная особенность данного измерения (определения) – это, то насколько вырастает либо понижается доходность вашего актива в сравнении с его средней доходностью за некий определенный период времени.

Если говорить проще, то в случаях, когда доходность имеет такую волатильность, при которой она вырастает и понижается в значительной мере – Ваш инвестиционный портфель подвержен более высоким рискам, так как его исполнение может попасть под достаточно быстрое изменение в любую из сторон, как благоприятную, так и наоборот.

Объяснение формулы расчета по коэффициенту Шарпа

Формула расчета данного коэффициента на первый взгляд кажется, довольно замысловатой и многих заставляет паниковать. Не стоит этого делать – сама концепция очень проста.

Если смотреть с практической стороны, тогда Коэффициент Шарпа попросту определяет доходность имеющегося инвестиционного портфеля. Рассмотрим подробнее.

Первая (верхняя) строка формулы с «Rp–Rf», определяет величину процентной ставки и ежегодную доходность актива, получаемую вами после простой покупки ценных бумаг, скажем казначейства США, сроком на три месяца.

Таким образом, используя эту формулу, вы можете определить, имеет ли место в вашей стратегии прибыль либо стоит о ней забыть и приобрести векселя казначейства какой-либо другой страны, предположим вашей.

Допустим, что выбранная вами стратегия приносит достаточную прибыль, т.е. большую, чем процентная ставка векселей казначейства США. И тут коэффициент Шарпа задает вам следующий вопрос – вы получаете больше доходов благодаря своим умениям либо причиной тому больший риск? Для ответа на данный вопрос следует разделить первую (верхнюю) часть формулы т.е. «Rp–Rf» на сигму «?».

Таким образом, коэффициент показывает инвесторам две основные вещи. Во-первых, приносят либо нет их инвестиционные портфели большее количество денег, нежели безрисковая % ставка. И во-вторых, инвесторы видят прямое соотношение доходности вложений к прямым рискам.

Получается, что наш коэффициент показывает – торгуете ли вы с умом либо же просто рискуете, т.е. доходность вашего фонда, которая взвешена по риску.

Как использовать уже рассчитанный (определенный) коэффициент Шарпа?

Данный коэффициент рекомендовано применять на минимум трехлетней или четырехлетней истории работы инвестиционного актива.

Следует помнить, что стандартное отклонение рассчитывает абсолютную величину волатильности инвестиционного портфеля не связанную ни с одним из каких-либо индексов. Поэтому без дополнительной информации вы не сможете определить, является ли наш Коэффициент Шарпа со значением 1,06 для вас хорошим или плохим.

Относительно риска, оценку прибыльности своих инвестиций Вы сможете получить, лишь сравнив данный коэффициент у разных активов. Используя другие измерения совместно с Sharpe Ratio, инвесторы могут выбрать именно ту стратегию, которая будет подходить под их финансовые нужды и соответствовать граничным рискам.

Применяя Коэффициент Шарпа, трейдеры имеют возможность между собой сравнить несколько стратегий.

К примеру, если сравнивать две системы, которые за определенный период показали одинаковую доходность, но при этом у одной из них риск получился больше (например, у первой), то соответственно у нее коэффициент по Шарпу будет меньше, то это говорит о ее низкой эффективности в сравнении со второй системой.

Данный коэффициент, как вариант, можно было бы применять для определения управляющих, которые предоставляют возможность копировать их сделки или для сравнения эффективности каких-либо стратегий с разными Памм счетами.

Но во втором случае трейдерам придется использовать лишь одну торговую стратегию, у которой имеется информация о валютном инструменте, на котором собственно и проводятся торги. А сделать это очень непросто, так как прибыльные Памм управляющие, как правило, торгуют активами и дополнительной информацией о них вряд ли поделятся.

Что же касается копирования сделок, то использование Sharpe Ratio здесь подходит лучшим образом, т.к. в большинстве случаев торговые сигналы поступают по определенной валютной паре, поэтому пользователям, которые их используют, расчеты (определяющие эффективность торговли управляющего) будет сделать намного проще.

Помимо этого, сегодня существуют сервисы, указывающие в статистике торговли управляющих уже готовый показатель Sharpe Ratio.

Помимо этого, формула расчета данного коэффициента предполагает применение бенчмарка, используемого в качестве предела, который должна превзойти конкретная стратегия (иначе нет смысла ее рассматривать).

К примеру, простейшая стратегия «только лонг», выбранная для акций большой капитализации Штатов, должна надеяться, что в среднем преодолеет индекс «S&P 500» либо хотя бы с ним сравнится при меньшей волатильности по доходности.

При этом выбор бенчмарка не всегда дело очевидное. К примеру, может ли быть использован в роли бенчмарка для индивидуальных акций ETF сектора или лучше взять непосредственно «S&P 500»? А может лучше «Russel 3000»?

Также возникают сложности с «безрисковыми ставками» — можно ли использовать правительственные национальные долговые бумаги или корзину международных таких же долговых бумаг? Долгосрочные или краткосрочные ноты? А может смесь всего? Понятно, что способов выбрать бенчмарк огромное количество.

Коэффициент Шарпа, как правило, применяет безрисковые ставки, и зачастую для стратегий с использованием американских акций они основаны на правительственных казначейских 10-тилетних облигациях.

Недостатки и ограничения коэффициента Шарпа

При всех положительных показателях Sharpe Ratio небезупречен. Прежде всего, это связано с расчетом входных параметров.

К примеру, определение риска (стандартное отклонение в прибыльности актива) – вопрос спорный. А дело здесь в том, что у фондов с разными колебаниями доходности (положительные/отрицательные) при прочих равных могут быть близкими по значению показатели «?», а это совершенно не корректно с инвестиционной стороны.

Коэффициент Шарпа имеет еще один существенный недостаток – он поддается манипулированию. Другими словами значение коэффициента не будет показательным при крайне стабильных результатах.

Вернее, если фонд из месяца в месяц работает все время одинаково (схожие показатели доходности, которые превышают значения безрисковых ставок), то его значение коэффициента Шарпа будет запредельно высоко и ничего не скажет нам о действительном положении вещей.

Это является следствием того, что стандартное отклонение неизменно будет стремиться к нулевому значению, а дробь – к бесконечности. Хотя сам факт стабильной прибыльности – уже большой плюс для инвесторов, главное в этом случае, чтобы доходы были выше банковских.

Безусловно, коэффициент Шарпа широко применяется в количественных финансах, однако у него имеются и свои ограничения.

Первым делом необходимо отметить, что Sharpe Ratio на данные прошлых событий. Его можно определить по волатильности и распределению исторических результатов, а не по тем событиям, которые ожидаются в будущем.

Когда делают оценку инвестиционного портфеля по данному коэффициенту, предполагается, что будущие события будут подобны прошлым.

А это, как вы знаете, не всегда так, в особенности, когда происходит изменение рыночных условий.

Также расчет коэффициента Шарпа предусматривает, то что используемые для этого результаты будут иметь нормальное по Гауссу распределение.

Но, к огромному сожалению, нынешние рынки зачастую подвергаются более высокому эксцессу, чем при нормальном распределении.

По этой причине у распределения результатов имеются так называемые «тяжелые хвосты», а уже экстремальные события происходят намного чаще, нежели предполагает распределение Гаусса.

Отсюда вывод – Sharpe Ratio недостаточно хорошо может оценить хвостовой риск.

Коэффициент Шарпа (eng. Sharpe Ratio), как определить его.
Формула коэффициента для расчета

РЕКОМЕНДУЕМ ПОСМОТРЕТЬ:

Источник: http://InfoFx.ru/osobennosti-torgovli/koefficient-sharpa-sharpe-ratio-kak-ego-opredelit-formula-rascheta-koefficienta/

Коэффициент Шарпа – расчет и примеры на Форекс и Фондовом рынке

Расчет и применение коэффициента Шарпа

Один из самых очевидных показателей, используемых начинающими трейдерами для анализа личной эффективности – процент доходности. Но у него есть один недостаток: зависимость от рисков. Чем они больше, тем меньше прибыльность. Но не факт, что эффективность самой сделки ниже.

Есть более надежный инструмент, используемый профессиональными трейдерами для анализа стратегии – коэффициент Шарпа. Его вывел нобелевский лауреат Уильям Шарп. Коэффициент Шарпа показывает соотношение между прибыльностью и рисками. Плюс этого инструмента в том, что его может использовать даже новичок.

Что такое коэффициент Шарпа в трейдинге простыми словами

Коэффициент Шарпа – это показатель финансового рынка, позволяющий определить эффективность выбранной трейдером стратегии. Основные показатели, используемые этим инструментом – это доходность, стандартное отклонение доходности и безрисковая доходность, которые мы рассмотрим далее.

Коэффициент Уильяма Шарпа простыми словами – это показатель, дающий трейдеру возможность легко взвесить риски и потенциальную доходность и решить, нужно торговать по этой стратегии в будущем или нет.

Недостаток коэффициента Шарпа в том, что исходные данные для его анализа должны быть нормально распределены. Проще говоря, чтобы все значения в виде графика, были симметричны и не имели резких пиков или падений.

Рассмотрим основные компоненты, которые используются для расчета коэффициента Шарпа.

1. Доходность

Для расчета доходности может использоваться любой временной промежуток, но очевидно, что чем он больше, тем выше надежность расчетов. Хороший показатель для анализа – средний прирост за одну сделку.

2. Безрисковый доход

Этот термин только звучит страшно. На деле же это минимальный доход, который гарантирован трейдеру. Проще говоря, какую сумму можно заработать со 100%-й вероятностью. По сути это минимальный заработок, который надеется получить трейдер. Если сравнивать минимальную безрисковую доходность с реальной прибыльностью, можно с легкостью оценить потенциальную выгодность стратегии.

На практике полностью безрисковых инвестиций не существует, даже в самых консервативных финансовых инструментах. Но скажем, казначейские облигации США можно считать условно безрисковыми.

Для сравнения 3-месячные и 10-летние векселя и их процентная ставка:

На Форекс безрискового дохода не существует, в то время как для банковских вкладов он равен величине процентной ставки.

Надо сказать, что в МетаТрейдере коэффициент Шарпа определяется именно с нулевой ставкой безрискового дохода.

3. Стандартное отклонение

Главный признак, по которому оценивается риск по стратегии – дисперсия, то есть, то, насколько сильно разбросаны сделки по доходности. Делается это с помощью стандартного отклонения – очень важного статистического показателя.

Предположим, средняя доходность составляет 50%. В какой ситуации риски будут меньше: если она высчитывается из сделок с доходностью в 0%, 0%, 0% и 100%, 100%,100% или если доходность 6 сделок распределяется так: 40%, 40%, 40% и 60%, 60%, 60%?

Конечно, во втором случае. Здесь сделки отклоняются от среднего значения лишь на 10%, а в первом случае – на 50%. Чем больше волатильность доходности, тем хуже для трейдера.

Как рассчитать коэффициент Уильяма Шарпа на примере

Принцип расчета этого показателя очень прост. Сначала нужно определить среднюю доходность на сделку. Потом высчитывается безрисковый доход, и он вычитается из средней прибыльности. Полученную цифру делим на стандартное отклонение, которое в свою очередь вычисляется так:

  1. Берется массив сделок с определенными процентами доходности по каждой из них.
  2. Из каждой сделки вычитается средняя доходность.
  3. Получившиеся значения возводим в квадрат.
  4. Из массива возведенных в квадрат отклонений высчитывается среднее арифметическое, от которого затем извлекается квадратный корень.

Видим, что понять, как рассчитать коэффициент Шарпа, очень просто, и его способен осилить даже ребенок.

Каким должен быть коэффициент Шарпа на Форекс?

Какой должен быть коэффициент Шарпа? Чем этот показатель больше, тем лучше. Но минимальное значение, при котором стратегия считается прибыльной – единица. Если цифра составляет 3, то это говорит о вероятности убытка меньше 1 процента, что находится в пределах статистической погрешности.

Коэффициент Шарпа для Форекс используется для сравнения стратегий. Если трейдер не знает, какую выбрать, он может рассчитать показатель для одной ТС и для другой. Какой из них будет выше, той стратегией и нужно пользоваться.

Как мы уже поняли, на Форекс безрисковый доход нулевой, поэтому формула для внебиржевого валютного рынка упрощается. Нужно разделить среднюю прибыльность на одну сделку за определенное время на стандартное отклонение.

Некоторые аналитики считают, что на Форекс нужно указывать минимальное значение безрисковой доходности, потому что ноль приводит к более высоким показаниям. Следовательно, возможны искаженные данные. Очень часто в качестве безрисковой доходности рекомендуют использовать процент по депозитам даже на валютном рынке. В общем, нужно смотреть по ситуации.

Применение коэффициента Шарпа на фондовых рынках

На фондовых рынках необходимо выставлять то значение, которое минимально вам гарантировано. Очень удобно равняться на облигации и векселя, потому что по истечению срока экспирации определенная прибыль гарантирована. Во всех остальных аспектах его применение аналогично другим финансовым рынкам.

Определенной стратегии торговли по коэффициенту Шарпа нет, поскольку этот инструмент предназначен для совсем других задач – а именно проверить ее эффективность.

Коэффициент Шарпа при инвестициях в ПАММ-счета

Коэффициент Шарпа можно использовать для инвестиций разных видов, в том числе, и для ПАММ-счетов. Очень часто брокеры, предоставляющие подобные услуги, игнорируют этот показатель, поэтому человеку приходится самостоятельно определять этот показатель. Формула расчета такая же.

Безрисковая доходность в этом случае ставится на уровень около 5%, что равняется средней ставке долларовых депозитов в самых влиятельных банках стран СНГ.

Пользоваться коэффициентом Шарпа так же просто, как и в трейдинге. Смотрите один ПАММ-счет и второй. Сравниваете коэффициенты. Какой больше – в тот вкладываться более выгодно.

Это можно делать на сервисе MyFxBook.

Расчет в Excel

Рассчитывать значение коэффициента Шарпа удобно через Excel. Возьмем, к примеру, акции компании Disney. Информацию о стоимости ее ценных бумаг можно узнать на сайте Yahoo Finance.

Там же можно скачать данные об изменениях котировок, которые можно загрузить в Excel.

В результате, перед вашим взором предстанет такая таблица.

Коэффициент Шарпа рассчитывается по ценам закрытия дня на бирже. То есть, цена «Close».  Чтобы рассчитать среднюю доходность, необходимо сначала добавить соответствующую колонку. В нашем случае для расчета доходности нужно использовать формулу =(E3-E2)/E2, которая вписывается в соответствующую ячейку.

Дальше хватаемся за правый нижний уголок и тянем его вниз к концу таблицы. Значения за остальные дни рассчитаются автоматически.

Создаем еще одну колонку со средним значением доходности.

В ячейке, которая находится сразу под ней, вписываем формулу =срзнач(). После того, как поставите первую скобку, нужно выделить весь массив данных о доходности, и только потом ставить закрывающую скобку. В результате, у нас получится значение средней доходности.

Далее добавляем с подписью в верхней ячейке «Безрисковая доходность». Там можно поставить 5%.

Ну и наконец, добавляем еще одну колонку с подписью «Cтандартное отклонение», которое рассчитывается формулой =СТАНДОТКЛОН(), в которую заносится тот же массив, что и в функцию =срзнач(). В нашем случае это значения H3:H22.

Дальше все эти значения входят в описанную выше формулу. В нашем случае она выглядит как =(J2-K2)/L2. В вашем же она будет отличаться. В описанном примере коэффициент Шарпа оказался отрицательным, поэтому вкладываться в этот актив не стоит.

Плюсы и минусы

Плюсы коэффициента Шарпа:

  1. Способность показать соотношение риска и доходности, которое можно в дальнейшем использовать как для принятия решения об инвестировании в конкретный финансовый инструмент, так и для составления торгового или инвестиционного портфеля.
  2. Простота в расчетах.
  3. Легко интерпретировать.

К сожалению, ничего идеального не бывает, и коэффициент Шарпа имеет недостатки:

  1. Необходимость нормального распределения сделок по доходности.
  2. Инструмент не учитывает серии выигрышных или проигрышных сделок, хотя часто именно это является сигналом, продолжать торговлю по этой стратегии или нет.
  3. Иногда показания ложные, поэтому следует проверять их другими инструментами.

В любом случае, нет более доступного и эффективного инструмента, чем коэффициент Шарпа, способного не только определить эффективность стратегии, но и сравнить ее с другими.

Об Уильяме Шарпе

Родился Уильям Шарп (William Forsyth Sharpe) в Бостоне в семье студентов. Его отец учился на филолога, а мать – на курсе по естествоведению.

После завершения школы Шарп захотел стать врачом      , но уже после года обучения на медика, его перестала интересовать эта профессия.

Он стал учиться в Лос-Анджелесе на бухгалтера и экономиста, и там его особо заинтересовала микроэкономика, которая перевернула его представление о жизни.

В 1956 году он стал магистром экономики и трудоустроился в большую организацию, которая занималась исследованиями в прикладной сфере этой науки. Именно тогда он стал работать над теорией, описывающей взаимодействие ценных бумаг и портфелей.

Полезные статьи:

А уже в 1961 году он стал доктором в сфере экономики. Собственно, именно его диссертация стала основой для создания описываемого нами финансового показателя. А в 1990 году он становится лауреатом Нобелевской Премии, после которой интерес к его коэффициенту стал еще сильнее.

Заключение

Теперь вы знаете, как рассчитать коэффициент Шарпа. Это, безусловно, хороший инструмент для тестирования стратегий и эффективности торговли.

Комплексный подход – это друг трейдера. Но чтобы его применить, нужно освоить несколько разных техник по отдельности. Сегодня вы ознакомились с одной из них. Коэффициент Шарпа отображает степень, в которой выгодна конкретно эта стратегия.  Удачи в торговле.

Источник: https://InvestingNotes.trade/koefficient-sharpa.html

Коэффициент Шарпа. Формула расчета. Пример в Excel

Расчет и применение коэффициента Шарпа

Рассмотрим один из классических коэффициентов оценки паевых инвестиционных фондов (ПИФов) и инвестиционных портфелей – коэффициент Шарпа.

Коэффициент Шарпа (англ. Sharp ratio) – показатель оценивающий эффективность и результативность управления инвестиционным портфелем (паевым инвестиционным фондом). Данный коэффициент был разработан У. Шарпом в 1966 году и применяется для оценки, как уже действующих стратегии управления, так и для сравнительного анализа  различных альтернативных стратегий инвестирования.

Коэффициент Шарпа используется в оценке: качества управления паевых инвестиционных фондов (ПИФов), результативности активных торговых стратегий на фондовом рынке, эффективности формирования инвестиционных портфелей инвесторов.

★ Инвестиционная оценка в Excel. Расчет NPV, IRR, DPP, PI за 5 минут

Коэффициент Шарпа представляет собой относительный показатель доходность-риска инвестиционного фонда (ПИФа) и отражает во сколько раз уровень избыточной доходности выше уровня риска инвестиции (инвестиционного портфеля, ПИФа, акции и т.д.).

Формула расчета коэффициента Шарпа

где:

rp – средняя доходность паевого инвестиционного фонда (инвестиционного портфеля);

rf – средняя доходность безрискового актива;

σp – стандартное отклонение доходностей активов паевого инвестиционного фонда (риск инвестиционного портфеля).

Рассмотрим более подробно, как рассчитать каждый из показателей формулы.

Расчет доходности безрискового актива

Для оценки избыточной доходности, которую получил инвестор необходимо рассчитать минимальную возможную доходность, которую он мог бы получить при вложении в абсолютно надежные активы. Именно избыточная доходность отражает качество управления и эффективность принимаемых решений менеджером паевого инвестиционного фонда.

Существуют несколько способов оценки доходности безрискового актива:

  • Доходность банковского вклада наиболее крупных и надежных банков РФ. К таким банкам можно отнести Сбербанк, Альфа-банк, ВТБ 24.
  • Доходность безрисковых государственных ценных бумаг (ГКО, ОФЗ в России, 10 летние облигации для США), которые обладают максимально возможной надежностью по рейтингам международных рейтинговых агентств Moody’s, Standard&poor’s и Fitch.

В результате необходимо сопоставить доходность полученную за счет управления рискованными ценными бумагами и минимальный уровень доходность абсолютно надежного актива.

Оценка паевого инвестиционного фонда по коэффициенту Шарпа

Оценка показателя Шарпа представлена в таблице ниже. К примеру, если показатель больше единицы, значит уровень избыточной доходности выше нежели существующий риск фонда или инвестиционного портфеля. Оценка показателя позволяет выбрать наиболее инвестиционно привлекательные фонды, портфели или стратегии для вложения.

Значение показателяОценка эффективности управления
Sharp ratio >1Высокая результативность управления паевым инвестиционным фондом или портфелем. Данный фонд привлекателен для вложения
1>Sharp ratio >0Уровень риска выше, нежели значение избыточной доходности паевого инвестиционного фонда. Необходимо рассмотреть другие показатели инвестиционной привлекательности фонда
Sharp ratio Sharp ratio2Первый паевой инвестиционный фонд более привлекателен для вложения, чем второй

Пример выбра паевого инвестиционного фонда по коэффициенту Шарпа

Информацию о существующих фондах можно получить на сайте nlu.ru (национальная лига управляющих). Заходим на сайт и выбираем раздел «АНАЛИТИКА».→ «Коэффициент» → «Коэффициент Шарпа». В системе есть возможности отфильтровать по различным параметрам фонды: по типу, по управляющей компании, по категории и дате.

Оценка паевых инвестиционных фондов на основе коэффициента Шарпа

На рисунке ниже будет отражаться ранжирование всех паевых инвестиционных фондов по коэффициенту Шарпа. Так фонд «РЕГИОН Фонд акций» имеет максимальное значение коэффициента Шарпа, что свидетельствует о высоком качестве управления.

Оценка ПИФов на основе их эффективности управления

Пример оценки коэффициента Шарпа для инвестиционного портфеля

Если вы формируете сами инвестиционный портфель и вам необходимо сравнить различные портфели ценных бумаг, то для этого необходимо получить котировки изменения всех акций входящий в портфель, рассчитать их доходность и общий риск портфеля. Рассмотрим более подробно пример расчета коэффициента Шарпа в программе Excel.

Источник: http://finzz.ru/koefficient-sharpa-formula-rascheta-primer.html

Коэффициент Шарпа: определение, правила расчета и формула

Расчет и применение коэффициента Шарпа

Коэффициент Шарпа показывает, как соотносятся доходность инвестиционного портфеля и риск. Данный коэффициент интересен для инвесторов, которые сравнивают торговые стратегии или финансовые инструменты.

Сущность показателя

Коэффициент Шарпа показывает работоспособность используемой торговой стратегии или финансового инструмента. Чем он выше, тем более эффективен объект оценки.

Данные этого коэффициента показывают как показатель прошлых оценок прибыльности к риску, так и прогнозируют уровень стабильности потенциальной прибыли. В связи с этим он чаще всего применяется финансовыми аналитиками в сводных таблицах, в которых приводится оценка активов.

Проведение расчета

Расчет коэффициента показывает инвестору, какая степень риска присуща определенному активу. Рассчитывают коэффициент Шарпа по формуле, указанной в статье.

  • Rx – среднее значение прибыли.
  • Rf – наилучшая доступная норма прибыли безрисковой обеспеченности.
  • StdDev – стандартное отклонение прибыльности актива.
  • X – инвестиции.

При расчете коэффициента Шарпа в числителе используется математическое ожидание.

Как любой коэффициент, данный показатель является безразмерной величиной. Наиболее часто его данные сравниваются с бенчмарком, который представляет собой безрисковую процентную ставку доходности актива.

Расчет прибыльности безрискового актива

Инвестор хочет получить большую доходность по сравнению с той, которую он мог бы получить, если бы вкладывался только в полностью надежные активы. Эта большая доходность называется избыточной. Последняя характеризует качество менеджмента и эффективность принимаемых решений инвестором.

Прибыль актива с нулевым риском может быть оценена несколькими способами:

  • Доходность банковских депозитов самых крупных и надежных отечественных банков, прежде всего, Сбербанка и ВТБ24.
  • Доходность государственных ценных бумаг с нулевым риском (к этим бумагам относятся ОФЗ и ГКО в РФ, десятилетние облигации в США), обладающие максимальной надежностью по мнению рейтинговых агентств S&P, Moody's, Fitch.

Оценка коэффициента Шарпа

Если рассчитанное значение больше 1, это свидетельствует о том, что для портфеля или актива характерна высокая доходность, что делает его привлекательным для инвестиций.

При нахождении рассчитанного значения в диапазоне от 0 до 1 можно говорить о том, что степень риска выше величины избыточной доходности. Здесь, помимо коэффициента Шарпа, нужно оценить и иные показатели инвестиционной привлекательности.

Если рассчитанное значение меньше 1, это свидетельствует о том, что избыточная доходность принимает отрицательные величины, лучше предпочесть актив с минимальным уровнем риска.

Если сравниваются два рассматриваемых коэффициента, и один превышает другой, то говорят, что первый портфель (актив) более привлекателен для инвестора по сравнению со вторым.

Пример оценки

При формировании инвестиционного портфеля необходимо осуществить сравнительный анализ разных портфелей. Для этого необходимо знать котировки всех ценных бумаг этого портфеля. Облегчить расчет может помочь программа MS Excel. Рассмотрим пример расчета коэффициента Шарпа на основе виртуальных компаний.

Предположим, что в наш портфель входят акции трех компаний: А, Б, В. Доля в портфеле компании А составляет 30 %, компании Б – 25 % и компании В – 40 %. Возьмем для примера котировки в течение одной недели, хотя в реальности нужно оценивать за более продолжительный промежуток времени (месяц, квартал, год).

Вводим в электронную таблицу данные по котировкам всех трех компаний за оцениваемый период.

Далее, рассчитываем доходность ценных бумаг каждой сравниваемой компании, для чего в ячейки вводим формулу нахождения натурального логарифма отношения каждого последующего дня к предыдущему, например, в ячейке Е4 вводим =LN(B4/B3)*100, протягиваем (или копируем формулу и вставляем в последующие ячейки) вниз и вправо.

Далее рассчитываем доходность портфеля, его риск и оцениваем доходность безрискового актива. В качестве последней величины примем процентную ставку по депозитам (8 %). Доходность портфеля рассчитываем по формуле = СР. ЗНАЧ (E4:E9)*B1+СР. ЗНАЧ (F4:F9)*C1+СР. ЗНАЧ (G4:G9)*D1 (полученная величина одна, ничего протягивать или копировать не нужно).

Риск портфеля рассчитываем по формуле = СТАНД. ОТКЛОН (E4:E9)*B1+СТАНД. ОТКЛОН (F4:F9)*C1+СТАНД. ОТКЛОН(G4:G9)*D1

Коэффициент Шарпа рассчитываем, как = (H4-J4)/I4.

Таким образом, значение коэффициента Шарпа отрицательное, что свидетельствует о том, что портфель рискованный и требует пересмотра. Доходность по безрисковому активу выше, чем доходность по портфелю. Это говорит о том, что инвестору выгоднее положить деньги в банк под 8 % годовых, чем вкладывать в этот портфель.

Модифицированный коэффициент

В данном варианте расчета коэффициента Шарпа вместо стандартного отклонения применяется модифицированная мера риска, которая позволяет провести оценку потенциальных рисков динамики распределения прибыльности активов.

В данном случае расчет выполняется по формуле, указанной в статье.

  • rp – средняя прибыльность портфеля (актива);
  • rf – средняя прибыльность актива с нулевым риском;
  • σp – стандартное отклонение прибыльностей актива (портфеля);
  • S –эксцесс распределения прибыльностей;
  • zc – куртозис распределения прибыльностей актива (портфеля);
  • K – квантиль распределения того же показателя.

Данная модель включает в себя исключительно статистический расчет, что повышает адекватность оценки риска.

Недостатки коэффициента Шарпа

Основным достоинством данного коэффициента является то, что при его использовании можно увидеть, какой финансовый инструмент будет обеспечивать более плавную прибыльность, а какой – скачкообразную.

Но коэффициент не лишен недостатков, основных из которых 3:

  1. С его помощью рассчитывается усредненная прибыль в процентах за период, что в случае серии убыточных периодов является некорректным.
  2. При использовании данного коэффициента резкое колебание в любую сторону имеет негативный оттенок, поскольку рассматривается как риск.
  3. При расчете данного коэффициента серии убыточных и прибыльных сделок не учитываются, а это необходимо для оценивания эффективности торговли.

Коэффициент Сортино

Для нивелирования второго недостатка коэффициента Шарпа Сортино предложил его модификацию. У Шарпа рассматриваемый показатель учитывает как риск и положительные, и отрицательные изменения доходности.

Коэффициент Сортино учитывает только отрицательные тенденции.

Рассчитывается он так же, как и основной коэффициент, рассматриваемый в данной статье, но учитывается волатильность по прибыльностям актива или портфеля ниже минимально допустимой степени прибыльности.

В заключение

Таким образом, коэффициент Шарпа является статистическим показателем стабильности дохода актива (портфеля). В случае если инвестор хочет учитывать только отрицательную динамику в изменении доходности, необходимо использовать коэффициент Сортино.

Источник: http://fb.ru/article/348768/koeffitsient-sharpa-opredelenie-pravila-rascheta-i-formula

Коэффициент Шарпа — оцениваем эффективность вашей стратегии

Расчет и применение коэффициента Шарпа

Добрейшего времени суток, товарищи Форекс трейдеры! Чаще при оценке стратегий на Forex трейдеры смотрят на доходность в процентах.

Чем их больше — тем лучше, не так ли? Но % доходности сильно зависит от риска и не отражает эффективности системы.

Так какой показатель использовать? Стандартом у финансовых аналитиков считается Коэффициент Шарпа, выведенный нобелевским лауреатом Уильямом Шарпом.

Ниже мы рассмотрим как рассчитать коэффициент Шарпа для оценки эффективности стратегии, разберемся что же он означает (многие умеют его считать, но не понимают его смысла), а также сделаем выводы о том в каких случаях он полезен, а в каких нет.

Коэффициент Шарпа на Форекс

Коэффициент Шарпа придумал известный американский экономист – Уильям Шарп. На сегодня, это один из наиболее часто используемых показателей отношения риска к доходности. Еще большую значимость коэффициент приобрел, когда в 1990 году, за свою модель оценки финансовых активов (CAPM) Шарп был избран лауреатом Нобелевской премии.

Человеку из сферы финансов будет не сложно понять принцип расчета коэффициента Шарпа и что тот должен отображать.

По сути, задача сводится к тому, чтобы узнать, сколько избыточной доходности вы получите в связи с удержанием более рискового актива.

Думаю, не секрет, что лишний риск всегда должен сполна компенcироваться соответствующей доходностью. Чем больше значение коэффициента, тем больше прибыли на риск одной и той же суммы.

Формула расчета выглядит следующим образом:

Доходность актива

Доходность можно измерять с любой периодичностью – это может быть день, неделя, месяц, или год. Также, в качестве показателя доходности можно брать средний прирост на сделку.

Единственное, желательно, чтобы исходные данные доходности должны быть нормально распределены. Отсюда и главная слабость коэффициента.

Резкие пики на выборке в 3 и более стандартных отклонения и ассиметричное распределение (видимый наклон графика) могут стать причиной ложной оценки.

Безрисковый доход

Безрисковкый доход – это теоретический доход с нулевым риском. То есть, это та доходность, которую инвестор может получить абсолютно без риска за какой-то определенный период времени.

По идее, — это минимальный доход, который инвестор ожидает получить от любой инвестиции.

Сравнивая этот показатель с реальным доходом, можно определить, насколько хорошую компенсацию вы получаете за дополнительный риск.

На практике, понятия инвестиции с нулевым риском не существует, так как даже самые безопасные инвестиции несут с собой некоторую долю риска.

Тем не менее, к безрисковой доходности можно отнести депозит в сбербанке, либо деньги, инвестированные в казначейские облигации США.

Рынок форекс – это всегда инвестиции с высоким риском, поэтому безрисковая доходность в нашем случае будет равна нулю. Но, если ваш депозит хранится в банке, в формулу можно подставить значение текущей базовой ставки.

В терминале MT4 показатель Шарпа считается, как отношение среднеарифметической доходности сделки к стандартному отклонению, при нулевом значении безрисковой ставки.

Полная формула выглядит так:

Стандартное отклонение

Коэффициент Шарпа оценивает эффективность инвестиции с точки зрения дисперсии доходов. Так как мы уже подсчитали избыточную доходность (доходность за вычетом безрисковой ставки), осталось поделить это значение на стандартное отклонение доходности актива. То есть, посчитать отношение доходности к риску.

Хотя сегодня это уже и не требуется, все же стандартное отклонение несложно рассчитать вручную. Допустим, вы собрали небольшую статистику доходности сделок: 3%, 4%, 5%, 2%, 1%. На первом этапе мы вычитаем из этой последовательности среднее и получаем такой ряд: 0%, 1%, 2%, -1%, -2%.

Далее, возводим значения в квадрат, получаем арифметическое среднее и выводим корень от результата – sqrt((0.00% + 0.01% + 0.04% + 0.01% + 0.04%) / 5) = 1.41%.

Для сравнения, возьмем немного другую выбрку: 2%, 8%, 5%, 4%, 6%. Очевидно, что доходность такой системы в рамках рассматриваемого периода больше, но мы также наблюдаем гораздо большую волатильность доходности, 2% против 1.41% у предыдущего примера. Соответственно, первая стратегия является менее рискованной.

Единицы расчёта коэффициента Шарпа

Для примера, попробуем сравнить эффективность двух торговых стратегий по показателям их доходности и риска. Допустим, первая стратегия дает 5% прибыли на сделку, при стандартном  стандартном отклонении (показатель дисперсии доходности) равном 4%.

Вторая стратегия в среднем приносит по 2% в каждой сделке, но отклонение не превышает 1%.  В данном случае, первая стратегия будет иметь коэффициент шарпа 1.25, а вторая – 2.0.

Это означает, что не смотря на меньшую доходность, вторая стратегия имеет лучшее соотношение риска к доходности.

Коэффициент Шарпа должен быть равен одному или выше. Тогда считается, что стратегия, которую мы анализируем, работает с достаточной эффективностью. Значение больше трех уже говорит о том, что вероятность получения убытка в каждой сделке меньше 1%. И чем больше полученное значение, тем лучше.

Вывод

В большинстве случаев, коэффициент Шарпа покажет реальную рентабельность стратегии. Но, иногда, показатель Шарпа может вводить в заблуждение.

Например, некоторые облигации могут показывать стабильную доходность выше банковского процента в течении многих лет, на что коэффициент ответит нереалистично высокими показателями.

В этом случае, полученное значение ничего не скажет о реальных рисках, стоящих за инвестированием в данную облигацию, пусть даже риск будет на самом деле минимальным. В целом же, данный коэффициент подойдёт для сравнения двух стратегий с относительно частыми входами и не самыми огромными целями.

С уважением, Алексей Вергунов
TradeaPro.ru

Источник: http://tradelikeapro.ru/koeffitsient-sharpa/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.